Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
ACS Appl Mater Interfaces ; 16(15): 19057-19067, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564293

RESUMO

Preventing ferroelectric materials from losing their ferroelectricity over a low thickness of several nanometers is crucial in developing multifunctional nanoelectronics. Epitaxially grown 5 at. % yttrium-doped Hf0.5Zr0.5O2 (YHZO) thin films exhibit an atomically smooth surface, an ability to maintain ferroelectricity even at a thickness of 10 nm, and excellent insulating properties, making them suitable for use as gate oxides in ferroelectric thin film transistors (FeTFTs). Through the epitaxial growth of a YHZO/La0.67Sr0.33MnO3 (LSMO)/SrTiO3 (STO) heterostructure, YHZO effectively retains its ferroelectricity and orthorhombic single phase, leading to enhancing electron mobility (∼19.74 cm2 V-1 s-1) and memory window (3.7 V) in the amorphous InGaZnO4 (a-IGZO)/YHZO/LSMO/STO FeTFTs. These FeTFTs demonstrate a consistent memory function with remarkable endurance (∼106 cycles) and retention (∼104 s). Furthermore, they sustain a constant memory window even under ±6 V bias stress for 104 s and exhibit excellent stability even under ±6 V/1 ms pulse cycling for 107 cycles. For comparison, a transistor with the same structure was fabricated using epitaxial nonferroelectric LaAlO3 (LAO) and epitaxial undoped Hf0.5Zr0.5O2 (HZO) as alternatives to YHZO. This study presents a novel approach to exploit the potential of YHZO in FeTFTs, contributing to the development of next-generation logic-in-memory.

2.
Sci Rep ; 14(1): 5440, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443482

RESUMO

This study aims to evaluate the safety of MK-7 produced by fermentation process using a Bacillus subtilis var. natto strain for human ingestion via acute oral toxicity, repeated dose 90-day oral toxicity, 28-day recovery test, and genotoxicity tests. The acute oral toxicity test results indicated that all subjects survived at the dose of 5000 mg/kg with no toxic effects. For the repeated dose 90-day oral toxicity test, MK-7 was administered to rats at 500, 1500, and 4500 mg/kg for 90 d. No abnormal findings were detected in clinical observations or in clinical pathological and histopathological examinations. The no-observed-adverse-effect level(NOAEL) was determined to be 4500 mg/kg/d, the maximum dose tested. For the evaluation of genotoxicity, reverse mutation, chromosomal aberration, and micronucleus tests were performed. In the reversion mutation test, vitamin K2 did not induce reversion in bacterial strains, and no chromosomal abnormality was observed in the chromosomal abnormality test using Chinese hamster lung cells. In the micronucleus test, micronuclei were not induced using ICR mouse bone marrow cells. All the toxicity test results suggest that vitamin K2 produced by fermentation processes using Bacillus subtilis var. natto induced no toxicological changes under the experimental conditions.


Assuntos
Bacillus subtilis , Aberrações Cromossômicas , Humanos , Camundongos , Cricetinae , Animais , Ratos , Camundongos Endogâmicos ICR , Vitamina K 2/toxicidade , Mutação , Cricetulus
3.
Int J Biol Macromol ; 262(Pt 2): 130194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360222

RESUMO

Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.


Assuntos
Gelatina , Tecidos Suporte , Tecidos Suporte/química , Gelatina/química , Metacrilatos/química , Impressão Tridimensional , Materiais Biocompatíveis , Engenharia Tecidual
4.
ACS Appl Mater Interfaces ; 16(2): 2457-2466, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166386

RESUMO

Recent studies have focused on exploring the potential of resistive random-access memory (ReRAM) utilizing halide perovskites as novel data storage devices. This interest stems from its notable attributes, including a high ON/OFF ratio, low operating voltages, and exceptional mechanical properties. Nevertheless, there have been reports indicating that memory systems utilizing halide perovskites encounter certain obstacles pertaining to their stability and dependability, mostly assessed through endurance and retention time. Moreover, the presence of these problems can potentially restrict their practical applicability. This study explores a resistive switching memory device utilizing MAPbBr3 perovskite, which demonstrates bipolar switching characteristics. The device fabrication procedure involves a low-temperature, all-solution process. For the purpose of enhancing the device's reliability, the utilization of TPBI(2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) as an electron transfer material on the MAPbBr3 switching layer was implemented for the first time. The formation and rupture of Ag filaments in the MAPbBr3 perovskite switching layer are attributed to reduction-oxidation reactions. The TPBI is involved in the regulation of filaments during the SET and RESET processes. Hence, it can be shown that the MAPbBr3 device incorporating TPBI exhibited about 1000 endurance cycles when subjected to continuous voltage pulses. Moreover, the device consistently maintained ON/OFF ratios above 107. In contrast, the original MAPbBr3 device without TPBI demonstrated a significantly lower endurance with only 90 cycles observed. In addition, the MAPbBr3 device integrated with TPBI exhibited a retention time exceeding 3 × 103 s. The findings of this research provide compelling evidence to support the notion that electron transfer materials have promise for the development of halide perovskite memory systems owing to their favorable attributes of dependability and stability.

5.
Adv Mater ; 36(9): e2308827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37996977

RESUMO

Perovskite materials have garnered significant attention over the past decades due to their applications, not only in electronic materials, such as dielectrics, piezoelectrics, ferroelectrics, and superconductors but also in optoelectronic devices like solar cells and light emitting diodes. This interest arises from their versatile combinations and physiochemical tunability. While strain engineering is a recognized powerful tool for tailoring material properties, its collaborative impact on both oxides and halides remains understudied. Herein, strain engineering in perovskites for energy conversion devices, providing mutual insight into both oxides and halides is discussed. The various experimental methods are presented for applying strain by using thermal mismatch, lattice mismatch, defects, doping, light illumination, and flexible substrates. In addition, the main factors that are influenced by strain, categorized as structure (e.g., symmetry breaking, octahedral distortion), bandgap, chemical reactivity, and defect formation energy are described. After that, recent progress in strain engineering for perovskite oxides and halides for energy conversion devices is introduced. Promising methods for enhancing the performance of energy conversion devices using perovskites through strain engineering are suggested.

6.
Biomater Res ; 27(1): 80, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608402

RESUMO

Human skin is an organ located in the outermost part of the body; thus, it frequently exhibits visible signs of physiological health. Ethical concerns and genetic differences in conventional animal studies have increased the need for alternative in vitro platforms that mimic the structural and functional hallmarks of natural skin. Despite significant advances in in vitro skin modeling over the past few decades, different reproducible biofabrication strategies are required to reproduce the pathological features of diseased human skin compared to those used for healthy-skin models. To explain human skin modeling with pathological hallmarks, we first summarize the structural and functional characteristics of healthy human skin. We then provide an extensive overview of how to recreate diseased human skin models in vitro, including models for wounded, diabetic, skin-cancer, atopic, and other pathological skin types. We conclude with an outlook on diseased-skin modeling and its technical perspective for the further development of skin engineering.

7.
Chem Commun (Camb) ; 59(31): 4562-4577, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36920360

RESUMO

Mass production of green hydrogen via water electrolysis requires advancements in the performance of electrocatalysts, especially for the oxygen evolution reaction. In this feature article, we highlight how epitaxial nickelates act as model systems to identify atomic-level composition-structure-property-activity relationships, capture dynamic changes under operating conditions, and reveal reaction and failure mechanisms. These insights guide advanced electrocatalyst design with tailored functionality and superior performance. We conclude with an outlook for future developments via operando characterization and multilayer electrocatalyst design.

8.
Adv Sci (Weinh) ; 10(13): e2207415, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36825675

RESUMO

As one of the effort to cope with the energy crisis and carbon neutrality, utilization of low-grade energy generated indoors (e.g., light) is imperative because this saves building and house energy, which accounts for ≈40% of total energy consumption. Although photovoltaic devices could contribute to energy savings, it is also necessary to harvest heat from indoor lights to generate electricity because the light absorbed by materials is mostly transformed into heat. For daily life uses, materials should not only have high absorptance and low emittance but also be easily processed into various forms. To this end, this work synthesizes black aqueous suspensions containing winding and bent linear gold nanostructures with diameters of 3-5 nm and length-to-diameter ratios of ≈4-10. Their optical and photo-thermal characteristics are understood through experimental and theoretical investigations. Black gold nanostructures are conveniently processed into metal-dielectric films on metal, glass, and flexible substrates. The film on copper has an absorptance of 0.97 and an emittance of 0.08. Under simulated sunlight and indoor LED light illumination, the film has equivalent photo-thermal and photo-thermoelectric performances to a top-tier sunlight-collecting film. This work attempts to modify the film structure to generate more usable electricity from low-energy indoor light.

9.
ACS Nano ; 17(5): 4404-4413, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825770

RESUMO

Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.

10.
Nanoscale ; 15(3): 1119-1127, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594352

RESUMO

Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La0.5Sr0.5Ni1-xFexO3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance, suggesting common motifs of the active surface with high surface area systems.

11.
ACS Appl Mater Interfaces ; 14(33): 38339-38350, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35968862

RESUMO

Recently developed fabrication methods for inorganic patterns (such as laser printing and optical lithography) can avoid some patterning processes conducted by conventional etching and lithography (such as substrate etching and modulation) and are thereby useful for applications in which the substrates and materials must not be damaged during patterning. Simultaneously, it is also necessary to develop facile and economical methods producing inorganic patterns on various substrates without requiring a special apparatus while attaining the above-mentioned advantages. The present study proposes a reaction-based method for fabricating inorganic patterns by immersing substrates coated with a colloidal nanosheet into an aqueous solution containing inorganic precursors. Silica and TiO2 patterns spontaneously developed during the conversion of each inorganic precursor. These patterns were successful on rigid and flexible substrates. We fabricated these patterns on a wafer-sized silicon and large flexible poly(ethylene terephthalate) film, suggesting the scalability. We fabricated a biomimetic pattern on both sides of a glass window, as a photovoltaic roof, for minimal optical losses to maximally present photovoltaic effects of a solar cell. The TiO2 pattern on glass window exhibits sustainable sunlight-driven-cleaning activity for contaminants. The method could provide a platform for economical high-performance inorganic patterns for energy, environmental, electronics, and other areas.

12.
Small ; 18(11): e2105611, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064754

RESUMO

Numerous studies have explored new materials for electrocatalysts, but it is difficult to discover materials that surpass the catalytic activity of current commercially available noble metal electrocatalysts. In contrast to conventional transition metal alloys, high-entropy alloys (HEAs) have immense potential to maximize their catalytic properties because of their high stability and compositional diversity as oxygen evolution reactions (OERs). This work presents medium-entropy alloys (MEAs) as OER electrocatalysts to simultaneously satisfy the requirement of high catalytic activity and long-term stability. The surface of MEA electrocatalyst is tailored to suit the OER via anodizing and cyclic voltammetry activation methods. Optimized electrical properties and hydrophilicity of the surface enable an extremely low overpotential of 187 mV for achieving the current density of 10 mA cm-2 alkaline media. Furthermore, a combined photovoltaic-electrochemical system with MEA electrocatalyst and a perovskite/Si tandem solar cell exhibits a solar-to-hydrogen conversion efficiency of 20.6% for an unassisted hydrogen generation system. These results present a new pathway for designing sustainable high efficiency water splitting cells.

13.
ACS Appl Mater Interfaces ; 14(6): 7788-7795, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35040620

RESUMO

Formation of type II heterojunctions is a promising strategy to enhance the photoelectrochemical performance of water-splitting photoanodes, which has been tremendously studied. However, there have been few studies focusing on the formation of type II heterojunctions depending on the thickness of the overlayer. Here, enhanced photoelectrochemical activities of a Fe2O3 film deposited-BiVO4/WO3 heterostructure with different thicknesses of the Fe2O3 layer have been investigated. The Fe2O3 (10 nm)/BiVO4/WO3 heterojunction photoanode shows a much higher photocurrent density compared to the Fe2O3 (100 nm)/BiVO4/WO3 photoanode. The Fe2O3 (10 nm)/BiVO4/WO3 trilayer heterojunction anodes have sequential type II junctions, while a thick Fe2O3 overlayer forms an inverse type II junction between Fe2O3 and BiVO4. Furthermore, the incident-photon-to-current efficiency measured under back-illumination is higher than those measured under front-illumination, demonstrating the importance of the illumination sequence for light absorption and charge transfer and transport. This study shows that the thickness of the oxide overlayer influences the energy band alignment and can be a strategy to improve solar water splitting performance. Based on our findings, we propose a photoanode design strategy for efficient photoelectrochemical water splitting.

14.
Nanoscale Adv ; 3(21): 5981-6006, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36133946

RESUMO

The water-based renewable chemical energy cycle has attracted interest due to its role in replacing existing non-renewable resources and alleviating environmental issues. Utilizing the semi-infinite solar energy source is the most appropriate way to sustain such a water-based energy cycle by producing and feeding hydrogen and oxygen. For production, an efficient photoelectrode is required to effectively perform the photoelectrochemical water splitting reaction. For this purpose, appropriately engineered nanostructures can be introduced into the photoelectrode to enhance light-matter interactions for efficient generation and transport of charges and activation of surface chemical reactions. Plasmon enhanced photoelectrochemical water splitting, whose performance can potentially exceed classical efficiency limits, is of great importance in this respect. Plasmonic gold nanoparticles are widely accepted nanomaterials for such applications because they possess high chemical stability, efficiently absorb visible light unlike many inorganic oxides, and enhance light-matter interactions with localized plasmon relaxation processes. However, our understanding of the physical phenomena behind these particles is still not complete. This review paper focuses on understanding the interfacial phenomena between gold nanoparticles and semiconductors and provides a summary and perspective of recent studies on plasmon enhanced photoelectrochemical water splitting using gold nanoparticles.

15.
Nano Lett ; 20(11): 8040-8045, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33135899

RESUMO

As the BO6 octahedral structure in perovskite oxide is strongly linked with electronic behavior, it is actively studied for various fields such as metal-insulator transition, superconductivity, and so on. However, the research about the relationship between water-splitting activity and BO6 structure is largely lacking. Here, we report the oxygen evolution reaction (OER) of LaNiO3 (LNO) by changing the NiO6 structure using compositional change and strain. The 5 atom % La deficiency in LNO resulted in an increase of the Ni-O-Ni bond angle and an expansion of bandwidth, enhancing the charge transfer ability. In-plane compressive strain derives the higher dz2 orbital occupancy, leading to suitable metal-oxygen bond strength for OER. Because of the synergistic effect of A-site deficiency and compressive strain, the overpotential (η) of compressively strained L0.95NO film is reduced to 130 mV at j = 30 µA/cm2 compared with nonstrained LNO (η = 280 mV), indicating a significant enhancement in OER.

16.
Small ; 16(41): e2003225, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945139

RESUMO

Organometallic and all-inorganic halide perovskites (HPs) have recently emerged as promising candidate materials for resistive switching (RS) nonvolatile memory due to their current-voltage hysteresis caused by fast ion migration. Lead-free and all-inorganic HPs have been researched for non-toxic and environmentally friendly RS memory devices. However, only HP-based devices with electrochemically active top electrode (TE) exhibit ultra-low operating voltages and high on/off ratio RS properties. The active TE easily reacts to halide ions in HP films, and the devices have a low device durability. Herein, RS memory devices based on an air-stable lead-free all-inorganic dual-phase HP (AgBi2 I7 -Cs3 Bi2 I9 ) are successfully fabricated with inert metal electrodes. The devices with Au TE show filamentary RS behavior by conducting-bridge involving Ag cations in HPs with ultra-low operating voltages (<0.15 V), high on/off ratio (>107 ), multilevel data storage, and long retention times (>5 × 104 s). The use of a closed-loop pulse switching method improves reversible RS properties up to 103 cycles with high on/off ratio above 106 . With an extremely small bending radius of 1 mm, the devices are operable with reasonable RS characteristics. This work provides a promising material strategy for lead-free all-inorganic HP-based nonvolatile memory devices for practical applications.

17.
Nano Converg ; 7(1): 11, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32189134

RESUMO

Rechargeable metal-ion batteries are considered promising electric storage systems to meet the emerging demand from electric vehicles, electronics, and electric grids. Thus far, secondary Li-ion batteries (LIBs) have seen great advances in terms of both their energy and their power density. However, safety issues remain a challenge. Therefore, rechargeable Al-ion batteries (AIBs) with a highly reliable safety advantage and active electrochemical performances have gathered intensive attention. However, the common issue for these two metal-ion batteries is the lack of cathode materials. Many advanced electrode materials reported provide greatly enhanced electrochemical properties. However, their inherent disadvantages-such as complicated fabrication procedures, restricted manufacturing parameters, and the requirement of expensive instruments-limits their potential for further applications. In this work, we demonstrate the high electrochemical activity of the lanthanide element, Sm, towards storing charges when used in both LIBs and AIBs. Lanthanide elements are often overlooked; however, they generally have attractive electrochemical properties owing to their unpaired electrons. We employed starch as both a low-cost carbon source and as a three-dimensional support for Sm metal nanoparticles. The composite product is fabricated using a one-pot wet-chemical method, followed by a simultaneous carbonization process. As a result, highly improved electrochemical properties are obtained when it is used as a cathode material for both LIBs and AIBs when compared to bare starch-derived C. Our results may introduce a new avenue toward the design of high-performance electrode materials for LIBs and AIBs.

18.
ACS Sens ; 4(9): 2395-2402, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31339038

RESUMO

Transition metal dichalcogenides (TMDs) have attracted enormous attention in diverse research fields. Especially, gas sensors are considered in a promising application exploiting TMDs. However, the studies are confined to only major TMDs such as MoS2 and WS2. Particularly, the chemoresistive sensing properties of two-dimensional (2D) NbS2 have never been explored. For the first time, we report room temperature NO2 sensing characteristics of 2D NbS2 nanosheets and the sensing mechanisms using first-principles calculations based on density functional theory. The results demonstrate that the NbS2 edges possessing different configurations depending on synthetic conditions differ in the sensing ability of the TMD nanosheets. This study not only broadens the potential of 2D NbS2 for gas sensing applications, but also presents the important role of edge configuration of TMDs depending on synthetic conditions for further studies.


Assuntos
Técnicas de Química Analítica/instrumentação , Nióbio/química , Dióxido de Nitrogênio/análise , Temperatura , Modelos Moleculares , Conformação Molecular , Nanoestruturas/química , Óxidos
19.
ACS Appl Mater Interfaces ; 11(33): 29910-29916, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322852

RESUMO

P-N heterostructures based on transition-metal dichelcongenides (TMDs) and a conventional semiconductor, such as p-Si, have been considered a promising structure for next-generation electronic devices and applications. However, synthesis of high-quality, wafer-scale TMDs, particularly WS2 on p-Si, is challenging. Herein, we propose an efficient method to directly grow WS2 crystals on p-Si via a hybrid thermolysis process. The WO3 is deposited to prepare the p-Si surface for coating of the (NH4)2WS4 precursor and converted to WS2/p-Si during thermolysis. Moreover, the WS2/p-Si heterojunction photocathode is fabricated and used in solar hydrogen production. The fabricated n-WS2/p-Si heterojunction provided an onset potential of +0.022 V at 10 mA/cm2 and a benchmark current density of -9.8 ± 1.2 mA/cm2 at 0 V. This method reliably and efficiently produced high-quality, wafer-scale WS2 crystals and overcame the challenges associated with previous approaches. The approach developed in this research demonstrates a magnificent progress in the fabrication of 2D material-based electronic devices.

20.
Nano Lett ; 19(9): 5897-5903, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31095915

RESUMO

An important factor in the performance of photoelectrochemical water splitting is the band edge alignment of the photoelectrodes for efficient transport and transfer of photogenerated carriers. Many studies for improving charge transfer ability between the electrode and the electrolyte have been reported, while research to improve charge transfer at the interface of the photoactive semiconductor and the conducting substrate is largely lacking. Here, we demonstrate that the water-splitting performance of an oxide heterostructured photoelectrode can be increased 6-fold by inserting an atomically thin polar LaAlO3 interlayer compared with that of an oxide heterostructure without an insertion to modify interfacial band offsets. The electrically lowered Schottky barrier is driven by the atomically thin layer, and the charge transfer resistance between the oxides is reduced by up to 2 orders of magnitude upon insertion of LaAlO3, a wide-gap (5.6 eV) insulator. We show that the critical thickness of the polar layer for enhancing the charge transfer is 3 unit cells. The dipole moment from the polar sheets of LaAlO3 introduces an internal electric field, which modifies the effective band offsets in the device. This work serves as a proof of concept that photoelectrochemical performance can be improved by manipulating the band offsets of the heterostructure interface, suggesting a new design strategy for heterostructured water-splitting photoelectrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...